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Ftir die Madelung'schen Zahlen wurde ein Programm 
von Herrn Dr K. Sahl benutzt, fiir die anderen Auf- 
gaben (interatomare Abstfmde, Deformation der 
Struktur) Programme eines der Autoren (H.-E. v. Mer- 
tens). 
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The Borrmann effect must be described theoretically in terms of the dynamical theory of X-ray dif- 
fraction. This is conventionally done with the Ewald-von Laue formulation of that theory. It is shown 
that the effect may be equally well described with the simpler Darwin theory. A system of difference 
equations similar to those of Darwin is solved, yielding two systems of waves in the crystal with different 
refractive indices and different absorption coefficients. As in the Ewald-von Laue treatment, for one 
state of polarization the linear absorption coefficient essentially vanishes for one set of waves, giving 
rise to the phenomenon of anomalous transmission. 

Introduction 

Possibly the most significant new development in X-ray 
diffraction physics in the last few years has been the 
emergence of the Borrmann effect, or anomalous trans- 
mission, as an important new tool for studying the 
crystalline nature of solids. The phenomenon observed 
is that, given a perfect crystal oriented to diffract with 
the diffracting planes normal to its irradiated surface 
(Laue geometry), for one of the states of polarization 
of the incident X-radiation the linear absorption co- 
efficient essentially disappears. The energy of the radi- 
ation is thus interchanged between two electromagnet- 

ic waves, one in the primary beam direction and one 
in the diffracted beam direction, throughout the thick- 
ness of the crystal, corresponding to a net energy flow 
along the diffracting planes. Since there is very little 
attenuation due to photoelectric absorption, very in- 
tense, parallel, plane polarized beams of X-rays may 
be transmitted through nearly perfect crystals large 
enough completely to absorb the incident radiation 
under normal circumstances. 

* Research sponsored by the U.S. Atomic Energy Com- 
mission under contract with the Union Carbide Corporation. 

Anomalous transmission may be accounted for the- 
oretically only in terms of the dynamical theory of 
X-ray diffraction. Two formulations of that theory 
exist: that due to Darwin, later modified by Prins, and 
that due to Ewald and extended by yon Laue. The 
Darwin theory is the simpler of the two, but has been 
reserved for diffraction in the Bragg geometry, i.e. the 
case in which the diffracting planes are parallel to the 
irradiated surface so that the incident and diffracted 
beams make equal angles with the surface. The un- 
usual diffraction phenomena associated with the Borr- 
mann effect have been treated only in terms of the 
more elegant (and more difficult) Ewald theory. 

We show here that the Borrmann effect may equally 
well be described in terms of the simple Darwin theory. 

Theory 

The notation used and the formulation of the problem 
follows closely James's (1950) treatment of the Darwin 
theory in Bragg geometry. Fig. 1 is analogous to 
James's Fig.24 (James, 1950, page 55). It represents a 
family of planes of atoms parallel to the crystal surface. 
The planes are numbered, beginning with the zero 
plane at the surface. Incident onto the crystal is a beam 



B E R N A R D  BORIE 471 

of X-radiation in the To direction. To is the displace- 
ment due to that wave just before its encounter with 
the crystal. The atoms populating the zero (and sub- 
sequent) planes are assumed to be distributed so that 
they scatter in phase to form a plane wave in the So 
direction. So is the displacement of the scattered wave 
just after the zero plane of atoms. The directions of 
So and To are taken to make equal angles with the 
family of planes. 

Define q, the single plane reflection coefficient, to be 

So = - i q T o .  

It may be shown that q is given by 

n2 
q = - ~fe2/mC2sin ~ (1) 

where n is the number of atoms per unit area in the 
plane, ~ is the angle between To and the plane (in this 
case the complement of the Bragg angle), and the other 
symbols have their usual significance. The derivation 
of this expression is similar to that given by James 
(1950, page 35). Though the treatment in James is in 
terms of Bragg geometry, so that the scattering atomic 
planes are the 'reflecting' planes in the sense of Bragg's 
law, it may be shown that a similar result obtains for 
Laue geometry under consideration here. It is impor- 
tant to note that the atomic planes of Fig. 1 are not 
the Bragg planes but are perpendicular to them. 

In addition to the So wave, the zero plane of atoms 
will also scatter in phase in the T direction. Hence the 
net wave in the T direction just after the zero plane 
is (1 - iqo)To. The reflection coefficient at zero scattering 
angle, q0, is identical with q except that f must be re- 
placed by its value at 0 = 0. Let rp be the phase change 
associated with an advance of the wave front of either 
T or S from the zero plane to the first plane. Then 7'1, 
the displacement of the transmitted wave just before 
the first plane, is given by 

7'i=(1 -iqo)e-i~'To. (2) 

In general Tr is the displacement of the transmitted 
wave between the ( r - 1 ) t h  and rth planes, just before 
its encounter with the rth plane; Sr is that of the scat- 
tered wave between the rth and ( r+ 1)th planes, just 
after the rth plane. 

We may write difference equations relating these 
quantities. Sr is composed of that part of Tr which is 
scattered in the S direction by the rth plane, plus that 
part of St-1 which is transmitted by the rth plane. 
Hence 

S t =  - iqTr + ( 1 -  iqo)e-l~ Sr-1.  (3) 

Tr+l is made up of that part of Tr which is transmitted 
by the rth plane, plus that part of Sr-a which is scat- 
tered in the T direction by the rth plane: 

Tr+l=(1- iqo)e - t~Tr - iqe -2 t~Sr -x  . (4) 

Equations (3) and (4) may be combined to obtain an 
expression in T with the S's eliminated: 

2(1 - i q o ) T r =  Tr+~e 'q' + Tr-l[q2e -~' +(1-iqo)2e-*~] . (5) 

This equation is the Laue analog to James's equation 
(2.69), which was developed for the Darwin theory in 
Bragg geometry. 

The general solution to a difference equation such 
as (5) is of the form Tr = Cfl r where C and fl are con- 
stants independent of r. If we substitute this into equa- 
tion (5), there results 

2(1 - iqo)fl=fl2e i~ + [q2e-i~° + (1 - iqo)2e-t~°] , 

and if we solve this for fl we obtain 

f l=e-~° '[(1-  iqo) + iq] . 

Thus the solution to equation (5) is 

T r = C l e - t ' ~ [ 1 - i q o - i q ] r  + C2e- t~ '[1- iqo+ iq] r (6) 

with C~ and C2 to be determined by boundary condi- 
tions. They are given by equation (2) and by a choice 
of To = 1. The substitution of the boundary conditions 
into equation (6) gives C1 = C2 =½, SO 

T r = ½ e - i ~ ' [ ( 1 - i q o - i q ) r + ( 1 - i q o + i q ) r ]  . (7) 

With the aid of equation (4) we obtain 

S r = ½ e - i ' ~ [ ( 1 - i q o - i q ) r + l - ( 1 - i q o + i q ) r + l ] .  (8) 

We may interpret the refractive index of the crystal 
in terms of q0, as does James (1950, page 53). What 
we have shown is that it is related to q0 only if the 
crystal is not oriented to diffract. When the conditions 
for diffraction described here are realized, we see that 
T and S are each composed of two waves, each with 
a slightly different index of refraction. One is greater 
and the other less than that given by q0. If we let the 
displacements associated with these two waves be 

Vr = ½e-~  (1 - iqo-  iq ) r (9) 
and 

Wr= ½e-'r~ (1 - iqo+ iq)", (10) 
we have that 

Tr= Vr+ Wr (II) 
and 

e- l~Sr- i  = V r -  Wr .  (12) 

The displacement due to S just before its encounter 
with the rth plane, e-l~°Sr-1, is the proper quantity to 
be compared with Tr. 

I 

0 1 r-1 r r+l 

Fig. 1. Schematic illustration of the diffraction geometry. 
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Discussion 

At the surface of the crystal, Vr and Wr are in phase, 
but since their refractive indices are different, their 
phase difference increases as they penetrate the crystal 
Hence for small r, Tr is only slightly less than unity 
and Sr is very small. At some distance r-- R (the extinc- 
tion distance) into the crystal, Vr and Wr are exactly 
out of phase, and TR=0 and e-t~°Sn-t = 1. The extinc- 
tion distance is given by 

(1--iqo--iq)R+(1--iqo+iq)R=O. 

Thus for a non-absorbing crystal (hence one for which 
f, q, and q0 are real), the energy is interchanged between 
T and S throughout the thickness of the crystal at 
intervals determined by the extinction distance. 

Since we have made no assumptions about the nature 
of f and q, equations (7), (8), (9), (10), (11), and (12) 
may also be used to describe the case of an absorbing 
crystal. In this case f,  q, and q0 are complex and we 
may associate the linear absorption coefficient with 
their imaginary components as does James (1950, page 
63). Thus, when the crystal is oriented to diffract, not 
only are the indices of refraction of the waves V and 
W anomalous, but their absorption coefficients as well. 

Suppose that we take the imaginary part o f f  to be 
independent of 20 and we ignore the effect of thermal 
motion. Then if To is polarized so that its electric vector 
is in the plane of Fig. 1 (case I), 

qo" cos 20= q" 

where q"  and qo' are the imaginary parts of q and q0. 
If the electric vector of To is normal to the plane of 
Fig. 1 (case II) . . . . .  

qo =q  
From equation (9) we see that the effective value of / t  
for the V wave is greater than the normal value of/.t, 
and the wave is very quickly attenuated by photo- 
electric absorption. However, for case I, the W wave 
[equation (10)] has an anomalously small value of / , ,  
and in fact for case II the effective value of/~ for the 
W wave is identically zero. 

Thus for a thick absorbing crystal, sufficiently far 
from the surface so that the V waves in both cases and 
the W wave in case I have been dissipated by absorp- 
tion, the wave field inside the crystal consists only of 
W waves in the directions of the incident and diffracted 

beams, polarized in the sense of case II. If the incident 
beam is unpolarized, exactly one-fourth of its intensity 
is associated with these waves which are transmitted 
through the crystal without absorption. At the exit 
interface, half of this intensity goes into the transmitted- 
diffracted beam and half into the transmitted-direct 
beam. Hence for an unpolarized incident beam, each 
of the anomalously transmitted Borrmann beams has 
an intensity of one-eighth the incident intensity. In a 
real crystal, the effect of thermal motion is to cause 
the transmitted intensity to be somewhat less. 

The magnitudes of the propagation vectors of the 
W waves in the T and S directions are equal. If the 
x direction is taken normal to the crystal surface, and 
if the components of the propagation vector for the 
W wave in the T direction are kx, ku, then the com- 
ponents of the vector for the wave in the S direction 
are kz, - ku. 

Let the components of a position vector in the crystal 
be rz, ru. Then far from the crystal surface, after the 
V waves have been dissipated by absorption, equations 
(10) and (11) reduce to Tr= Wr and e-~oSr-1 = - Wr. 
The phase factors for these two waves may be written 

T= ½ exp{i(kxrx+ kuru)} 
and 

S= -½ exp{i(kxrz-kuru)} . 

The resultant electromagnetic displacement is 

T+ S =  exp (in~2) exp (ikxrz) sin kuru. 

Thus the net effective wave field in the crystal is a 
plane wave moving in a direction normal to the surface, 
but with nodes and antinodes across its wave front 
given by sin kuru. Since ku=lk] sin 0 and Ikl=2n/2, 

2n n 
ku= -2-. s i n 0 =  -7"  

Hence the nodes occur at ru = nd, where n is any integer. 
The occurrence of nodes in the net wavefield just at 
the atomic planes may be interpreted qualitatively to 
account for the vanishing ofct for the Borrmann beams. 
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